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1 INTRODUCTION

A growing number of problems in the field of engineering require the study of fluid-structural

systems exposed to complex dynamic loadings. In particular, the deformation and yielding of

lox posts in the Space Shuttle Main Engine and the eroding of solid propellant boundaries in

the Solid Rocket Boosters are known to have significant influence on the flow field structure

and on performance of the systems. The modeling of such phenomena couples a dynamic

structural analysis with a transient nonlinear fluid analysis for which the computational do-

main is continuously changing due to structural motions. New modeling and computational

techniques are needed to simulate these types of fluid-structure interactions (FSI) in order

to factor such effects into design considerations.

This report documents the progress made in resolving the computational issues asso-

ciated with modeling high temperature and pressure viscous flows in advanced propulsion

systems. The first phase of this effort has been devoted to the development and testing

of various adaptive techniques for dynamically updating a computational domain to reflect

the deformations of various structural components. Results from applying these adaptive

procedures to two example problems, the lox-post problem and the flexible cylinder problem,

clearly demonstrate the potential of the methods under development.

The following sections provide specific details on the work completed during the first

phase of this project. The first section presents an overview of adaptive computational

methods for various classes of fluid-structure interaction problems. Here the key features

associated with several approaches are outlined and the advantages/disadvantages of each

are summarized. Section 3 presents a mathematical formulation for general fluid-structure

interaction problems with a moving domain. The next section discusses the two adaptive

approaches.used in solving the benchmark problems presented in Section 5. The first scheme

is a user interactive scheme which is quite versatile and easy to implement but requires an

excessive amount of monitoring by the operator and is computationally inefficient. The

second method is a new, local remeshing method for handling a general class of fluid-

structure interaction problems. This method couples many of the attractive features of other

approaches into a computationally efficient and versatile method. The following section,

Section 5, presents the results obtained for two test cases_ Results from both the user

interactive and local remeshing procedure are described. The final section summarizes the

current status of the project and future goals to be completed.

w

\



W

2 LITERATURE SURVEY ON MOVING MESH AL-

GORITHMS
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2.1 Automatic Mesh Displacement Method

The automatic mesh displacement method is based on the paper presented by Donea, Giu-

liani, and Halleux [1]. Because of the shortcomings of purely Lagrangian and purely Eulerian

descriptions, efforts have recently been expanded in the finite element area to develop inte-

grated procedures with generalized kinematical descriptions of the fluid domain that possess

both Eulerian and Lagrangian features. These generalized descriptions are generally referred

to as arbitrary Lagrangian-Eulerian (ALE) algorithms. The methodology employed with this
approach is to describe an ALE finite element formulation with automatic and continuous

rezoning of the fluid mesh. The key steps involved here are as follows:

1. An arbitrary Lagrangian-Eulerian (ALE) kinematical description of the fluid domain

is adopted in which the grid points can be displaced independently of the fluid motion.

2. In the automatic mesh displacement prescription algorithm, grid velocity is computed

at each step of the time integration procedure.

0.I 6' - 6t

w,+_ t = 1 E WtJ,i+ -'_ Z L}J E J,i I,, 1i,i _ j s j L}j "N--:
(2.1)

where

i ,'_ components of a vector

I, J ,,_ node numbers

N ,,_ the number of nodes connected to node I via element sides and diagonals

Lrj "_ the current distance between node I and connected node J

6 ,-_ total nodal displacements

At -,_ time step

.

A

listed

The second term of the right hand side of Eq. (2.1) is a corrective term which enhances

the grid velocity when the distance between adjacent nodes tends to become too short.

This will keep the fluid mesh regular.

plot depicting this approach is shown in Fig. 2.1. Advantages and disadvantages are
below:

1. Advantages

(a) Internal fluid nodes are moved automatically by the program

(b) ALE description allows the fluid mesh to remain regular

2
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(c) Method consists of a continuous rezoning process, thus transient and steady-state

modeling is feasible.

2. Disadvantages

(a) Calculates the grid velocity for all nodes (globally), i.e., grid motion is not re-

stricted to a selected region and thus additional CPU time is required for regions

of the mesh where grid motion is negligible.

(b) Limited flexibility for large structural motions
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2.2 Overlapping Grid Method

The Chimera grid scheme is one of the few methods found in the literature search that

does not require regridding of the mesh. This method, an overlapping grid method, consists

of generating a main grid over the entire flow domain with smaller grids generated over

areas of interest in the flow field. Each grid is solved separately using information from the

other grids. Minor grids use interpolated data from the major grid for specifying far-field

boundary conditions while the major grid has the points that overlap nearest to the center

of the minor grid "blanked out." The values of these blanked points are interpolated from

the solution of the minor grid after the major grid iteration is complete.

Four major changes are necessary to adapt a single grid scheme to a multi-grid scheme.

First, the database structure must be altered to manage multiple grids of different dimen-

sions. Second, the "blanked" points of the major grid must be recognized, flagged, and

properly handled. Third, the boundary conditions need to be adjusted so that each grid

can have its boundary conditions separately specified. Finally, interpolation routines are

required. Steger, Dougherty, and Benek [2, 3] have implemented these changes and have

shown good results for solutions to the potential flow and Euler equations.

The advantages of using a multigrid routine include the following:

1. Complex geometry problems can be solved without difficulties with grid distortion.

2. The grids are easy to contruct and are well-ordered.
v

3. The overlapping of the grids provides a "nice" net for interpolation.

4. Separate equation systems can be solved on each grid. For example, the Euler equations

can be solved on a minor grid around an airfoil with a potential flow solution in the

major grid.

Some of the disadvantages of such a scheme are:

1. Labeling of blanked out points must be handled separately.
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Grid velocity is computed

at each time step.
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I

Grid will be updated automatically

at each time step.

Figure 2.1: Schematic of the automatic mesh displacement or ALE (arbitrary La-

grangian-Eulerian) method.
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2. An interpolation procedure between overlapping grids must be implemented.

3. Multiple interpolated boundary conditions must be handled.

4. Additional vectors and storage are required to handle multiple grids and boundary

conditions.

Some sample domains from Steger, Dougherty, and Benek [2] are shown in Figs. 2.2 and
2.3.

t

w_u

2.3 Background Grid/Moving Mesh Method

The methodology for this algorithm, based on investigations by Atluri and Nishioka [4],

consists of dividing the domain into three types of elements: moving elements, distorting

regular elements, and non-distorting regular elements. The bulk of the domain is discretized

by the non-distorting elements. The areas of the mesh where motion is occurring are locally

discretized by moving elements with distorting regular elements adjacent to the moving

ones. These distorting regular elements, therefore, serve as as a "buffer" between the moving

elements and the non-distorting elements. Shown in Fig. 2.4 is a typical deformation of a

simple structural component. (For simplicity's sake, the moving elements will be designated

•A;', the distorting regular elements "B", and the non-distorting regular elements "C'.)

When an A element moves, the B elements become distorted as the nodes common with

C elements remain fixed while the nodes common with A elements move. The mesh is

readjusted before the B elements become too distorted, i.e. after the moving element has

traversed half a side length. The adjustment involves a shift in the connectivity between the

B and C elements. The result of this procedure is the creation of C elements aad smaller B

elements behind the motion and the change from small B and C elements to large B elements
ahead of the motion.

This method appears attractive as the grid motion is localized and much of the domain

remains stationary and regular. Problems arise, though, when this model is extended beyond

"two-element-deep" domains. For example, consider the initial truncated domain in Fig.

2.5a. The A elements form an el_tic-type beam that is subjected to forces causing it to

bend. Hypothetical beam displacements are shown in Figs. 2.5b-d with their respective

meshes. The meshes of Figs. 2.5b and 2.5c show the distortion of the B elements as the A

elements move. In Fig. 2.5d, one sees the generation and destruction of C elements due to

the changing connectivity of the B elements. In addition, there is a problem arising that

does not occur with two-deep element problems: the generation of five-node elements.

The five-node element problem can be eliminated by altering the Atluri-Nishioka method.

Instead of using distorting four-node elements as "buffer" elements, a mesh of triangular ele-

ments around the moving elements can be generated. Preliminary versions of this triangular

remeshing are shown in Figs. 2.6a and 2.6b.
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The method of Atluri and Nishioka has been extended beyond two elements here. The A

elements represent an elastic beam. The deformation of the grid is acceptable in Figs. 2.5a-c,

but five-node elements are generated by the deformation shown in Fig. 2.5d.
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Figure 2.6: Atluri and Nishioka method, modified.

The method of Atluri and Nishioka is modified to include triangular elements as buffer

elements. The problem of the five-node elements has been eliminated.
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2.4 Other Methods

Lynch [5] suggests two remeshing equations. The first is a simple proportional stretching:

*,(0 = .,(t)[_i(0)/s(0)] (2.2)

where a_i is the location of node i and s is the location of the moving boundary node "above"

it. This method assumes that the boundary motion is in one direction only.

A second method assumes that the grid is an elastic material that satisfies the following

[_ _r0-_jax_y

+ aTa- + +ara- j=o

equations:

(2.3)

where (0", V) is the rate of displacement of a point in the mesh and v is Poisson's ratio.

If the movement of the boundary is prescribed, the velocities at the interior nodes can be

found by solving the elastic equations. The displacement of the grid is then calculated as:

='+_* *=/',t[o,,l+'* + (1-o)<]i -- Xi _.4)

where 0 is a time weighting parameter.

For regular mesh generation, Jacquotte [6] minimizes a functional derived from element

characteristics. For two dimensions, the following functional is suggested:

F : a__,SM*+(1-a)__ORT _

SM _ = (r_+r_+r 1+r_) _ (2.5)

ORTo = [(rl. r,)2 + (_,. _3),+ (_3. _,)2+ (r,. _1)_1,

with rl the directed vector from local node 1 to node 2 of an element e and (x a parameter

that emphasizes the smoothness (SM _) or orthogonality (ORT _) function.

In three dimensions, the functional o, is introduced, a is derived from invariants of the

Cauchy-Green tensor of the deformation. Specifically, if x are the coordinates of the grid,

the Cauchy-Green tensor is defined as:

C = Vx r. Vx (2.6)

The functional is then given by o" = o'(Ii,I2, Ia) where/1 is the trace of C, I2 is the trace of

the cofactor matrix of C, and Ia is the determinant of C.

11
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For the two-dimensional scheme, the nodes of two adjacent sides of an element are fixed

while the nodes on the other sides are allowed to move in order to minimize the functional.

In three dimensions, three adjacent sides of the element are fixed.

An adaptive algorithm that combines both remeshing and refining methods of grid adap-

tation is based on studies by Kikuchi and Cheng [7]. Much of this method depends on the

selection and definition of an error estimator. This error estimator is based on the maximum

value over the entire grid of the error associated with each element. (Often error estimates

are based on cumulative error.) The defining function of the error can be chosen for a par-

ticular problem (i.e., energy, strain). Once the error estimate has been calculated, it is then

used as a weighting function for the remeshing algorithm as follows:

X_, = (if-' X,(EdA,)) / __,(E,/A,)) (2.7)
C

where X,, is the new location of node n, X, is the geometric centroid of element e, A, is the

area of the element, and E_ is the error indicator of the element. The summation is taken

over the elements attached to node n. The result of the remeshing process is a more even

distribution of the error over the new elements. The error estimate may also be used as a

refining criterion in order to determine if new elements are to be generated.

v
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3 FORMULATIONS OF FLUID-STRUCTURE IN-

TERACTION PROBLEMS

w

i -

?

3.1 Weak Formulation of Fluid-Structure Interaction Problems

With Moving Domains

Consider a region Ft in/i_ 3 through which a material body, fluid or solid, moves. A fixed spatial

frame of reference can be estabfished with origin 0 and position vectors emanating from 0

denoted by x. Cartesian components of • are denoted xi, i = 1,2,3. A material particle

moving through 12 is labeled X; it is always possible to associate with X an ordered triple

X = (X 1, X _, X 3) of material coordinates which, for example, coincide with the coordinates

xi of the particle in some reference configuration of the medium. The motion of the material

body is then defined by a one-parameter family of mappings given the spatial positions of

particles as functions of time:

= x(x, t)

The particle velocity u, relative to the spatial frame, is then given by the material time

derivative of the motion (keeping X fixed):

Dx OX
U --

DT Ot

The acceleration is then
Du Ou

a- - +u. Vu
DT Ot

where V is the spatial gradient operator (_Tu = Oui/Ox • ii ® ii) with the summation

convention in force).

The mechanical behavior of the medium is governed by the conservation/balance laws

of physics and by the second law of thermodynamics. The balance laws can be written in

terms of primitive or conservation variables which can be arranged in a vector U = U(x, t);

for example, in terms of conservation variables, for a compressible fluid, we have

U = {p,m,e} T

where p is the mass density, rrt the momentum vector, and e the energy. The conserva-

tion/balance laws can thus be written

d

-_ /aUdz = - foaQ. nds + faBdz (3.1)

where dx and ds are volume and surface area measures of f_ and its boundary OFt, respectively,

Q is the flux matrix, and B is a vector of source terms. In three-dimensional models, (3.1)

represents five equations: the continuity equation representing the conservation of mass,

three equations expressing the balance of linear momentum, and the final equation describing

the conservation of energy.

13



The flux cangenerally be written as the sum of two parts. For three-dimensionalprob-
lems,

Qoi = uiU,_ + Eoi , i = 1,2,3 cr = 1,2,3,4,5

where

U, = p, U,:, = m,:,_l(a = 2, 3, 4), Us=e

Eu = 0; E,:,i = o'_,-1,i , o_ = 2, 3, 4,

Esi = ujaii, i,j = 1,2,3

where crij are Cartesian components of the Cauchy stress tensor, mi are the components of

the momentum vector, and o'ij is symmetric, by virtue of the principle of balance of angular

momentum. Expressing the equations in component form results in the following:

d

-_ fa U_dx = - fon (u,Uon, + Eo, n,)ds

(3.2)

+ faB_dx

with repeated indices summed and 1 _< _ <_ 5, 1 < i < 3.

A weak formulation of the problem is easily obtained in the usual way from (3.1):

Find Uo in a class of trial functions V such that

fT f Ob_ T T

(3.3)

V¢_ in a class W of test functions

where the repeated index a is summed from 1 to 5.

Now consider a moving system of coordinates y attached to a volume G which moves

through fL The coordinates Xi, xi, and yi are related through a transformation

V = _(X,t) = -_(x-l(ze, t),t) = k_(ze, t)

The velocity of this frame relative to the fixed spatial frame of reference is

u a = uO-q
Ot

Since the only way that matter can be carried through the boundary OG of G is to attain

a velocity which exceeds the local particle velocity, instead of (3.3),the general formulation

should read

foT £ _-_¢_dyd t = - foT foa(ui-u_)¢oU_nidsdt- foT focE.i¢_n, dsdt

(3.4)

+foT£B_¢odydt V¢_in W

14



where it is understood that the integrands are functions of the moving grid coordinatesyi.

In fluid-structure interaction problems, the key issue is determining an appropriate grid

velocity u v for the problem at hand. It is clear, however, that formulation (3.4) can apply

to either solid bodies, fluids, or to rigid bodies moving through fluids, with an appropriate

definition of the constitution of the material. For example, for small displacement gradients

w 0 = cgwi/OX j of a Hookean solid, the Cauchy stress is expressed as

a 0 = Eqktwk,t (3.5)

where Eqkt is the array of material elastic constants. For an ideal inviscid compressible gas,

aq = -p(U)6q (3.6)

where p(U) is the thermodynamic pressure,

V(U) = (7 - l)(e - p-Xm. rn/2) (3.7)

3' being the ratio of specific heats, and for an incompressible viscous fluid,

aij = -pSq + _ [Oxj + Ox_]

where p is the hydrostatic pressure and # is the fluid viscosity.

3.2 Discrete Formulations

Discrete models of weak formulations are constructed on finite-dimensional subspaces V h

of V and W h of W, which here are constructed using piec_wise polynomial approximations

over a mesh flh (or Gh) of elements _,, 1 < e < E. In general,

h • Pk([2o)

where Pk(_,) is the space of polynomials of degree < k defined on [2_. If a strip D,, =

[2, x [tl, t2] C [2 x [0, T] is also considered, then instead of (3.4), the problem now consists

of finding U h such that

Jaft=fhO¢ o._._ dydt [Jtt_ [ -- tqG h h

_3.9)

• w

The semi-discrete problem (3.9) is, of course, only a formal statement of a broad class

of finite element formulations. Specific algorithms are obtained from (3.9) by specifying

quadrature rules over [tx, t2], choosing local shape functions, specifying u a or an algorithm

for determining it, and incorporating the solution strategy into an appropriate adaptive

scheme.

15



3.3 Boundary Conditions

The integration by parts formulas used to obtain the weak formulation lead to two boundary

integral contributions as shown on the right-hand side of (3.4). For the most part these are

typical boundary integrals found in the Navier-Stokes equation with the Euler fluxes replaced

by E - uaU and F - yoU. The essential difference is embodied in the additional work term

done by the pressure on the moving boundary. These are given by

- fot fo Pn_i¢_ dsdt

(3.10/

-fotfonPua'n¢_ds dt

for the momentum and energy equations, respectively. Here n,i is the outward unit normal

vector.

w
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4 ADAPTIVE METHODS FOR FLUID-STRUCTURE

INTERACTION APPLICATIONS

u

w

m

m

m

One of the primary goals of the project is to develop a computational methodology which

is capable of dynamically handling arbitrarily complex motions of bodies or boundaries in

a fluid domain. The literature survey presented in Section 2 was the first step toward the

development of such a methodology. After careful analysis of the published research, two

approaches have been selected for further study. The first, a quasi-steady-state method, was

chosen based on the ease of implementation and compatability with the class of problems

being benchmarked. The second, a local remeshing method, was selected for its flexibility

in modeling a large class of fluid-structure interaction problems and for its computational

efficiency. Details for each of these algorithms are provided in this section.

4.1 Quasi-Steady-State Method

The quasi-steady-state method (QSSM) combines a grid generation scheme with a flow solver

for the Navier-Stokes equations and a solid mechanics equation solver in a user-interactive

iterative sequence to obtain steady-state solutions for fluid-structure interaction problems.

The specific steps involved in the method are as follows:

1. Generate an initial computational grid for the fluid domain.

2. Solve the viscous flow problem using the grid generated in step 1 for steady-state

conditions.

3. Extract the nodal values of the pressure and viscous stress from the fluid solution on

the boundary of the deformable structure.

4. Solve the structural problem subjected to specified surface tractions to determine the

deformed configuration.

5. If a convergence tolerance of the structural motion is satisfied, STOP.

6. Generate a new fluid grid using the results from step 4.

7. Go to step 2.

At the present time, this sequence of steps requires a great deal of user-interactive input as

the modules for the grid generation, flow solver, and structural modeling are all completely

separate. However, such an approach does possess a great deal of flexibility in that any

component of the solution process can be altered without significantly affecting the results
in the other areas.

17
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For the first step in this sequence, a new grid generation scheme was devised. This scheme

is based on the parabolic partial differential equation grid generation method suggested by

Nakamura in [10]. This approach is constructed by modifying the elliptic generation system

Ax¢¢ + Bx_,7 + Cx,,7 = 0

(4.1)
Ay_¢ + By¢,_ + Cy,7, 7 = 0

A _ xr_

such that the second derivatives in one coordinate direction do not appear. The solution

can then be marched away from the boundary in much the same manner as for hyperbolic

systems.

This parabolic method of grid generation incorporates many of the advantages of both

elliptic [8] and hyperbolic [9] methods including:

1. The grids are generated by a marching algorithm similar to the hyperbolic grid gener-
ation methods.

2. The parabolic differential equations exhibit a diffusion effect which smooths out sin-

gularities in the inner boundary conditions as exhibited by the elliptic generations
methods.

3. Prescribed outer boundary conditions may be satisfied.

In addition to these advantages, this approach requires significantly less storage and compu-

tational time than elliptic methods and avoids the boundary condition and stability problems

associated with hyperbolic methods.

The second step in the quasi-steady-state method involves obtaining the viscous solution

for the fluid grid generated in step 1. For this step the Taylor-Galerkin two-step algorithm

operational in an existing in-house finite element code was used. The third step was simply

a post-processing step which extracted the nodal values of the pressure and viscous stresses.

Step four was accomplished using a simple linear elasticity code for solving planar problems.

The subsequent steps are iterations of the preceding steps with different specified initial and

boundary conditions.

To demonstrate the capabilities of the parabolic grid generator, initial grids for the two

benchmark problems are presented here. In the first example, the flexible wall problem, an

H-grid consisting of 2400 elements was constructed as shown in Fig. 4.1. In the generation

of this mesh, a cluster function

y = _[x + csin(w_x/W)]

was used to stretch the grid in the region of the deformable wall. Here, A is an amplitude

parameter, x is the original position, y is the computational position, c is the cluster param-

eter, and w is the wave number. The scale in the figure has been nondimensionalized by the

length of the wall using the following dimensions:
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Figure 4.1: Initial grid generated for the flexible wall problem using the quasi-steady state
method.
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Wall height = 1.0

Wall thickness = 0.1

Length of computational domain = 4.0

Height of computational domain = 2.4

A similar procedurewasused to generatean initial grid for the rigid cylinder problem,
shown in Fig. 4.2. In this figure, the structure has beendecomposedinto three sections:
section A is the rigid sectionof the shaft with length R, sectionB is the flexible section of

the shaft with length 5R, and section C is the rigid cylinder. The thickness of the shaft is

constant at 0.25R and the cylinder radius is specified as R = 1.0. The computational fluid

domain consisting of 2520 elements was obtained using a cluster parameter of c = 0.0.
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4.2 Local Remeshing Method

Although there is a wide range of motion-related fluid-structure interaction problems, it

is believed that the majority fall into one of three general problem classes. The first class

consists of fixed yet flexible body motion such as the motion of a cantilevered beam. The

second class describes a free boundary variable domain problem. The third class of problems

are concerned with free body motion relative to a fixed point. The motion of a projectile

relative to the point of discharge is an example in this final set.

For most problems, any motion will occur in a restricted region of the domain, a so--

called "region of influence." By defining this region of influence, problem formulations and

algorithms can be simplified by restricting motion formulations to a subdomain and thereby

allowing simpler static formulations to be implemented outside of this region. Suitable

regions of influence for the three problem classes cited above include the following:

Class I

Class II

Class IiI

Area encompassing the expected deflection of the cantilevered beam

Banded region about a moving boundary

Domain fixed to the frame of reference of the projectile

Samples of the three problem classes and regions of influence are presented in Fig. 4.3. The

recognition of these regions of influence are important for it will be in these areas where local

remeshing will occur.

The local remeshing method is a combination of a number of the algorithms presented

in the literature. It combines the ideas of node relocation, remeshing and overlapping grids

into a single methodology for handling FSI problems. The steps involved in this method are

as follows:

1. Generate initial background grids for the fluid and the structure. (Presently these are

rectangular grids.)
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Figure 4.2: Initial grid generated for the problem of a rigid cylinder on a flexible shaft for

use with the quasi-steady state solution method.
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2. Define a region of influence in the fluid domain through which the structure will be

allowed to move.

3. Solve the structural problem and determine the nodal velocities for points on the

structural boundary.

4. Initialize the smoothing iteration counter to zero.

5. Determine a stable time step for the fluid domain.

6. Check the computational fluid grid for tangling at the end of the time step using the

nodal grid velocities from step 3.

7. If tangling occurs then:

(a) if the smoothing iteration counter is less than a given maximum smooth the grid

inside the influence region using a node relocation technique and interpolate for

new nodal values. Go to step 6.

(b) if the smoothing iteration counter is greater than a given maximum remesh inside

the influence region (possibly with triangular elements) and interpolate for new

nodal values. Go to step 4.

8. Solve the fluids problem with the specified boundary motion.

9. Update the nodal coordinates of the fluid grid.

10. Smooth the fluid grid if orthogonality or smoothness is violated.

ll. Check for convergence in the fluid region.

12. If convergence is achieved STOP.

13. Otherwise,. check and see if redefinition of the influence region is needed. If so, deter-

mine a new region of influence and project the current grid points onto the background

grid.

14. Go to step 3.

Presently all steps except 7(b) and 13 have been implemented into a pilot code for solving

FSI problems with finearly elastic structural response.

To implement such a methodology a remeshing algorithm to relocate nodal points in the

influence region is needed. The remeshing algorithm is based on a method presented by

Carcaillet, Dulikravich, and Kennon [11]. A master element is defined as a block of four

elements with a common node. Four vectors emanating from this node are delineated by

the common sides of two adjacent elements in the master element. Using these vectors, an

expression is derived that measures the regularity of the elements:

F(V) = c_(ORT) + (1 -e_)(SM) (4.2)
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whereV represents the coordinates of the centeral node and c_ is a variable that emphasizes

orthogonality vs. smoothness of the elements. The orthogonality function consists of the sum

of the squares of the dot products of the consecutive vectors; the smoothness is measured by

adding the squares of the differences of the areas of consecutive elements where the area is

approximated by the cross product of the bounding vectors. The functional (4.2) is applied to

all master element nodes in the region of influence. A function _b(w,_) is defined as F(V"+_),

where

V "+I = V" + w,_6V (4.3)

and w,_ is a line search parameter. The function ¢ is minimized with respect to the line

search parameter and the new location of V is then calculated. Figure 4.4 presents a visual

description of a master dement and an outline of the remeshing algorithm. The actual

FORTRAN coding of the algorithm is presented in Appendix A.
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(I) Define a master element about a

point V(z, y) consisting of the

elements bordered by 7i (i = I,4)

as shown in Figure A.

?'3

?'2

rl

4

Figure A

(9) Calculate F(V) = _(ORT) + (I - a)(SM) where

s_s = (_ - .4_.)_+ (m.- A_)_+ (A_- A_)_+ (A_- _)2
A1 = [1(71 × 7_.)11
ORT = (71.7_)5 + (75.73) _ + (73.7,)5 + (7,. 71)5
a = variable to emphasize orthogonality vs, smoothness (0 < a <_ I)

(3) Let V '_+1 = V '_ + w,,SV '_ where

6V° = -VF(V°)
6V _ = -VF(V _) + B_6V _-_

_,, = I]VF(V")II2/I]VF(V"-I)II 2

(4) Minimize ¢(w,,) = F(V "+1) with respect to _o_, a line search parameter.

(5) Solve for V '_+l.

Figure 4.4: Outline of the node relocation method for the local remeshing algorithm.
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5 BENCHMARK PROBLEMS

The two adaptive approaches outlined in Section 4 have been used in the solution of a pair

of benchmark problems. These test cases include a flexible wall problem with flow normal

to the surface of the wall, and a rigid cylinder on a flexible shaft with flow parallel to the

axis of the shaft. The initial configurations and grids for these two problems were described

in Section 4 and are shown in Figs. 4.1 and 4.2. For these geometries, the Navier-Stokes

equations have been solved with all open boundaries specified as subsonic inflow and all

solid boundaries specified as no slip. Motion of the no slip deformable boundaries has been

implemented as described in the previous sections.

5.1 Flexible Wall Problem

The first test case modeled is the subsonic flow of a compressible viscous fluid past a flexible

wall. The computational region shown in Fig. 4.1 is composed of three distinct bound-

aries: a subsonic inflow boundary on the top, left, and right, a rigid no slip bondary on

the bottom, and a flexible no slip boundary modeling the wall. (Here all subsonic inflow

boundaries are considered to be open boundaries and, once initialized, the code determines

whether the boundaries are inflow or outflow regions.) Initially, the inflow stream entering

_he computational region is specified as having a uniform streamwise velocity profile and a

zero transverse velocity. Interior nodal points have prescribed initial values coinciding with

the inflow conditions.

The calculations for this geometry have been performed using a Reynolds number of

3.14 x 105, a Prandtl number of 0.70, a Mach number of 0.45, and a free stream temperature

of 530 degrees Rankin. Other problem parameters include:

Specific heat ratio = 1.4

CFL number = 0.5

Elastic modulus = 5 x 103

Poisson's ratio = 0.30

A Lapidus artificial dissipation mechanism was used to dampen oscillations near shocks and

the Lapidus constant was set to 1.0.

5.1.1 Quasi-Steady-State Method

The flexible wall problem described above was initially solved using the grid shown in Fig.

4.1. For this configuration a steady-state solution was obtained (with a large convergence

tolerance) as shown in Figs. 5.1(a)-(d). These figures show the density, pressure, and Mach

contours, and the velocity vectors for the undeformed wall. The formation of a vortex at the
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top downstream corner of the wall and a shock in the upstream region are clearly visible in

these figures.

From this steady-state solution the pressure and viscous stress distributions along the

wall were extracted. With these values a new deformed configuration of the wall was deter-

mined and the grid generation scheme was used to create a new fluid grid, Fig. 5.2(a). Using

this grid a second steady-state solution was obtained, see Figs. 5.2(b)-(e). These figures

exhibit a distinctly different character from the original solution: the upstream shock has

disappeared and a strong vortex has developed behind the wall.

The same procedure was used repeatedly to determine subsequent motions of the wall un-

til a steady-state deformation (less than three percent change in the structural deformation)

was reached. Results of the second, third and fourth grid motions are shown in Figs. 5.3 to

5.5, respectively. Comparing these results, one sees a similar trend in all of the contour and

velocity vector plots, where there remains a strong vortex just downstream of the flexible

wall and the upstream shock has disappeared.

5.1.2 Local Remeshing Method

The local remeshing method was also used to solve the flexible wall problem but with a

somewhat simpler grid as shown in Fig. 5.6. For this case a radius of influence of 0.8 units

was selected which specified a subregion of the grid for which node relocation was employed

(see Fig. 5.7). Two additional parameters were needed for the remeshing algorithm: an

orthogonality parameter a and a smoothing parameter 1 - a. These values were set to 0.25

and 0.75; respectively.

During the simulation, the mass of the structure was ignored and a simple elasticity
solution for the wall was used to determine the motions. As a result of this simplification

small oscillations of the structure occurred over a large number of time steps requiring an

additional parameter to be specified to stabilize the motion. The parameter selected was a

three percent tolerance on the structural motions, i.e., when the maximum displacement of

the structure changed by less than three percent of its previous value, the nodal displacement

increments for the time step were zeroed out. This requirement allowed the structural motion

to finally settle to the steady-state configuration shown in Fig. 5.8.

An expanded view of the deformed configuration of the cantilevered flexible wail showing

the computational grid used in the structural calculations is presented in Fig. 5.9. This grid

was internally generated by the code using the boundary points from the fluid to generate

the outline of the structure and Lo's method [13] for determining the interior points. For

this configuration, the o'-y stress contours for the wall were also plotted as shown in Fig.

5.10. As expected, the maximum stress concentrations appear near the fixed support region.

To trace the development of the steady-state configuration, the density contours were

initially plotted every twenty time steps for the first 1020 steps. These results, see Figs. 5.11

(a)-(m), show the evolution of the density contours and the oscillations of the structural

motion. By following this evolution sequence, one finds a vortex developing at the upper

downstream corner of the wall (140 steps) which eventually breaks free and moves to a
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downstreamposition where itbecomes stationary (step 620). At this time a secondvortex
begins to develop behind the wall as indicated in steps 800 to 1020. After a number of
additional steps,this vortex directly behind the wall dissipatesleaving a singledownstream
vortex as in the quasi-steady-statemethod.

The final steady state results for the density, pressureand velocity are shownin Figs.
5.12 to 5.14. Theseresults comparefavorably with thoseobtained from the quasi-steady-
state method eventhough considerablydifferent grids havebeenusedin the modeling. It is
apparentfrom both setsof results that a finer grid would havebeendesirableto reducethe
oscillationsin the contour plots. Time and computational resources,however,restricted tke
numberof elementsin eachmodel.

z_

5.2 Rigid Cylinder on a Flexible Shaft

The second test case modeled is the subsonic flow of a compressible viscous fluid past a

rigid cylinder attached to a flexible shaft. The computational region shown in Fig. 4.2 is

composed of a subsonic inflow boundary along the top, bottom, left, and right edges, and

a no slip boundary representing the shaft and rigid cylinder. The computational domain

has dimensions of 14R x 14R (where R is the cylinder radius) and has been discretized with

approximately 2500 elements.

The simulation was performed using a Reynolds number of 3.14 x 105, a Prandtl number

of 0.70, and a free stream temperature of 530 degrees Rankin. The inflow conditions for the

upper and lower sections of the outer boundary have been divided along the axis of the shaft

(y = 0). For points above this axis the inflow Mach number is set to 0.30 while for poims

below the inflow Mach number is 0.45. Other parameters used in the computations are:

Specific heat ratio = 1.4

CFL number = 0.5

Elastic modulus = 2.0 x 104 (shaft)
= 2.0 x 108

Poisson's ratio = 0.30

Again, Lapidus artificial dissipation has been employed with the constant set to 1.0.

5.2.1 Quasi-Steady-State Method

The results of applying the quasi-steady-state method to the rigid cylinder problem are shown

in Figs. 5.15-5.19. In this simulation the shaft has been decomposed into two sections: a rigid

section of length R beginning at the left inflow boundary and a flexible section connecting

the rigid section to the cylinder. The first set of figures, 5.15 (a)-(e), correspond to the

steady-state solution of the cylinder in its initial undeformed position. As anticipated, the
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nonsymmetric inflow conditions have created a pressure imbalance with the higher pressure

contours occurring on the underside of the cylinder (see Fig. 5.15(b)).

Following a set of steps similar to those described in the first sample problem, a deformed

configuration for the shaft and cylinder was obtained as seen in Fig. 5.16 (a). Solving the

fluid dynamics equations for this geometry, a second steady-state solution for the pressure

distribution was obtained which was again used to obtain a new deformed structural model.

Results for the second, third, and fourth iterations are shown in Figs. 5.16 to 5.19, respec-

tively. Comparing these figures, it is notable that the location of the downstream vortices

are highly dependent on the final deformed configuration of the cylinder. Even for small

changes in the deformation, as from the last two iterations, this can have a significant effect
on the location of the downstream vortices.

i

I w

m

m

5.2.2 Local Remeshing Method

The local remeshing method was applied to the cylinder problem but with a somewhat

different set of material conditions. In this modeling, the shaft was assumed to be entirely

elastic with no rigid segment next to the inflow boundary and the cylinder was assumed to

be composed of an elastic material with the same modulus as the shaft. These simplifications

were due to the limitations present in the boundary conditions of the fluids code and the

ability to specify only a single elastic constant for the structural modeling.

In this simulation, the region of influence was selected to be 3.0 units which identified

a region for node relocation as shown in Fig. 5.20. The orthog0nality and smoothness

parameters were specified as 0.25 and 0.75, respectively, and the mass of the structure was

neglected. As in the first example a convergence tolerance of three percent was imposed on

the structural displacements.

During the simulation, the structure initially deformed with the flexible cylinder moving

upward. After approximately 300 time steps, however, the node relocation algorithm began

to detect negative Jacobians due to tangling of the fluids grid. Upon extracting the deformed

fluids grid at the time step (see Fig. 5.21 (an expanded view of this region is shown in

Fig. 5.22.)), it is apparent that some difficulties with the algorithm were occurring at the

downstream edge of the cylinder where a number of the elements had been excessively

sheared. The cause of this difficulty was in the selection of an orthogonality constant that

was too small (0.25). Investigations into various choices of larger values of a are discussed

in the following section.

Although a converged solution for this problem had not been obtained, the solution at 300

time steps has been plotted. Figure 5.23 shows the grid and the final deformed configuration

for the cylinder and flexible shaft. The or-9 stress contours are shown in Fig. 5.24. The

density, pressure, Mach contours, and velocity vectors at 300 steps are shown in Figs. 5.25
to 5.28.

The time history evolution of the density contours for the first 300 steps has also been

plotted in Fig. 5.29. Examining this sequence one observes that the node relocation method

has performed quite well for approximately the first 200 steps with a significant amount of
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smoothing occurring throughout the remeshing region.

5.3 Remeshing Parameter Study

A study of the effects of changing the orthogonality and smoothness parameters was con-

ducted in order to determine an optimal selection of parameters for the rigid cyinder/flexible

shaft problem and to eliminate the mesh distortion near the cylinder. In this study fluid

parameters and boundary conditions were the same as those used in Section 5.2.2. Four test

cases were run; the choice of the smoothness/orthogonality parameters are listed in the table

below.

TABLE 1

Case Orthogonality Smoothness

1 0.25 0.75

2 0.40 0.60

3 0.60 0.20

4 0.80 0.20

Cases 2, 3, and 4 were each run for 1000 time steps; case I stopped execution after

approximately 300 time steps. Results for these test cases are shown in Figs. 5.30-5.33.

Enlarged views of the mesh around the cylinder show that mid-range values for the or-

thogonality parameter provide the best combination of smoothness and orthogonality while

extreme values produce sheared grids. Taking the entire computational domain into account,

the choice of an orthogonality constant of 0.40 appears to be the best choice (for those cases

tested): the elements near the cylinder show little shearing and the majority of the domain

shows a regularity in the sizes of the elements. Figure 5.34 shows the density contours for

the case 2 problem extracted every 50 time steps.
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Figure 5.1a,b: Results for the flexible wall problem using the quasi-steady state method --

nondeformed configuration. (a) Density contours, (b) pressure contours.
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Figure 5.1c,d: Results for the flexible wall problem using the quasi-steady state method --

nondeformed configuration. (c) Mach contours, (d) velocity vectors.
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Figure 5.2a: First deformed configuration of the computational domain for the flexible wall

problem using the quasi-steady state method.
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Figure 5.2b,c: Results for the flexible wall problem using the quasi-steady state method--

first deformed configuration. (b) Density contours, (c) pressure contours.

34



HRCH C@NTSURS MIN = 0.554 -01 HAX = 0.I05 +01 INTERVAL: 0.333 -01

d

mj

7

F e

-_=:

Figure 5.2d,e: Results for the flexible wall problem using the quasi-steady state method--

first deformed configuration. (d) Mach contours, (e) velocity vectors.
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Figure 5.3a: Second deformed configuration of the computational domain for the flexible

wall problem using the quasi-steady state method.
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Figure 5.3b,c: Results for the flexible wall problem using the quasi-steady state method--

second deformed configuration. (b) Density contours, (c) pressure contours.
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Figure 5.3d,e: Results for the flexible wall problem using the quasi-steady state method--

second deformed configuration. (d) Mach contours, (e) velocity vectors.
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Figure 5.4a: Third deformed configuration of the computational domain for the flexible wall

problem using the quasi-steady state method.
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Figure 5.4b,c: Results for the flexible wall problem using the quasi-steady state method--

third deformed configuration. (b) Density contours, (c) pressure contours.
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Figure 5.4d,e: Results for the flexible wall problem using the quasi-steady state method--

third deformed configuration. (d) Mach contours, (e) velocity vectors.
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Figure 5.5a: Fourth deformed configuration of the computational domain for the flexible

wall problem using the quasi-steady state method.
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Figure 5.5b,c: Results for the flexible wall problem using the quasi-steady state method--

fourth deformed configuration. (b) Density contours, (c) pressure contours.
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Figure 5.5d,e: Results for the flexible wall problem using the quasi-steady state method--

fourth deformed configuration. (d) Mach contours, (e) velocity vectors.
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Figure 5.6:

method.

Initial uniform grid for the flexible wall problem using the local remeshing

45



Figure 5.7: Initial uniform grid for the flexible wall problem with remeshingregion cross-
hatched.
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Figure 5.8: Final deformed grid for the flexible wall problem using the local remeshing

method.
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Figure 5.9: Deformed finite element grid used for structural modeling of the flexible wall with

the local remeshing method. This grid was internally generated by the code after specifying

the boundary points.
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Figure 5.10: Sigma - Y stress contours for the final deformed configuration of the flexible

wall using the local remeshing method.
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ing method.

Evolution of density contours for the lox-post simulation using the local remesh-

Numbers under figures refer to time step.
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Figure 5.11b: Evolution of density contours for the lox-post simulation using the local

remeshing method. Numbers under figures refer to time step.
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Figure 5.1 lg: Evolution of density contours for the lox-post simulation using the local remesh-

ing method. Numbers under figures refer to time step.
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Figure 5.11h: Evolution of density contours for the lox-post simulation using the local

remeshing method. Numbers under figures refer to time step.
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Evolution of densi'ty contours for the lox-post simulation using the local remesh-

Numbers under figures refer to time step.
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Figure 5.11k: Evolution of density contours for the lox-post simulation using the local

remeshing method. Numbers under figures refer to time step.
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Figure 5.111: Evolution of density contours for the lox-post simulation using the local remesh-

ing method. Numbers under figures refer to time step.
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Figure 5.11m: Evolution of density contours for the lox-post simulation using tile local

remeshing method. Numbers under figures refer to time step.
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OENSITY C@NT@URS MIN : 0.425E*00 MQX = 0.127E÷01 INTERVQL= 0.281E-0l

Figure 5.12: Density contours for the final configuration of the lox-post simulation.
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Figure 5.13: Pressure contours for the final configuration of the lox-post simulation.
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Figure 5.14: Velocity vectors for the final configuration of the lox-post simulation.
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Figure 5.15a,b: l_esults for the rigid cylinder, flexible shaft problem using the quasi-steady

state method--nondeformed configuration. (a) Density contours, (b) pressure contours.
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Figure 5.15c,d: Results for the rigid cylinder, flexible shaft problem using the quasi-steady

state method--nondeformed configuration. (a) Mach contours, (d) velocity vectors.
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Figure 5.16a: First deformed configuration of the computational domain for the rigid cylin-

der, flexible shaft problem using the quasi-steady state method.
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Figure 5.16b,c: Results for the rigid cylinder, flexible shaft problem using the quasi-steady

method--first deformed configuration. (b) Density contours, (c) pressure contours.
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Figure 5.16d,e: Results for the rigid cylinder, flexible shaft problem using the quasi-steady

state method--first deformed configuration. (d) Mach contours, (e) velocity vectors.
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Figure 5.17a: Second deformed configuration of the computational domain for the rigid

cylinder, flexible shaft problem using the quasi-steady state method.
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Figure 5.17b,c: Results for the rigid cylinder, flexible shaft problem using the quasi-steady

state method--second deformed configuration. (b) Density contours, (c) pressure contours.
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Figure 5.17d,e: Results for the rigid cylinder, flexible shaft problem using the quasi-steady

state method--second deformed configuration. (d) Mach contours, (e) velocity vectors.
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Figure 5.18a:Third deformedconfiguration of the computational domain for the rigid cylin-
der, flexible shaft problem usingthe quasi-steadystate method.
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Figure 5.18b,c: Results for the rigid cylinder, flexible shaft problem using the quasi-steady

state method--third deformed configuration. (b) Density contours, (c) pressure contours.
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Figure 5.18d,e: Results for the rigid cylinder, flexible shaft problem using the quasi-steady

state method--third deformed configuration. (d) Mach contours, (e) velocity vectors.
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Figure 5.19a: Fourth deformed configuration of the computational domain for the rigid

cylinder, flexible shaft problem using the quasi-steady state method.
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Figure 5.19b,c: Results for the rigid cylinder, flexible shaft problem using the quasi-steady

state method--fourth deformed configuration. (b) Density contours, (c) pressure contours.
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Figure 5.19d,e: Results for the rigid cylinder, flexible shaft problem using tile quasi-steady

state method--fourth deformed configuration. (d) Mach contours, (e) velocity vectors.
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Figure 5.20: Initial grid for the rigid cylinder, flexible shaft problem with remeshing region

cross-hatched.

L_

80



r

Figure 5.21" Final deformed grid for the rigid cylinder, flexible wall problem using the local
remeshing method.
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Figure 5.22: Expanded view of the fluid grid in the region of the cylinder showing the

development of poor aspect ratios for elements near the tip.

L ,

82



!

I

i

!i

.

• w

F

b

Figure 5.23: Deformed finite element grid used to model the rigid cylinder and flexible shaft

with the local remeshing method. This grid was internally generated by the code after

specifying boundary points.
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i

Figure 5.24: Sigma - Y stress contours for the final deformed configuration of the rigid

cylinder, flexible shaft problem using the local remeshing method.
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Figure 5.25: Density contours for the final configuration of the rigid cylinder, flexible shaft

simulation using the local remeshing method.
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PRESSURE CgNTBURS M|N : 0.32_E*00 MRX = O.3iBE*OI INTERVAL: 0.950E-01

Figure 5.26: Pressure contours for the final configuration of the rigid cylinder, flexible shaft

simulation using the local remshing method.
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Figure 5.27: Mach contours for the final configuration of the rigid cylinder, flexible shaft

simulation using the local remeshing method.
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Figure 5.28: Velocity vectors for the final configurationof the rigid cylinder, flexible shaft
simulation using the local remeshingmethod.
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Figure 5.29a: Evolution of density contours for the flexible cylinder simulation.
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Figure 5.29b: Evolution of density contours for the flexible cylinder simulation.
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Figure 5.29c: Evolution of density contours for the flexible cylinder simulation.
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Figure 5.29d: Evolution of density contours for the flexible cylinder simulation.

under figures refer to time step.
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Figure 5.34a: Evolution of density contours for Case 2 parameter study:

0.40, Smoothness = 0.60. Numbers under figures refer to time step.
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Figure 5.34b' Evolution of density contours for Case 2 parameter study:

0.40, Smoothness = 0.60. Numbers under figures refer to time step.
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Figure 5.34c: Evolution of density, contours for Case 2 parameter study: Orthogonality =

0..10. Smoothness = 0.60. Numbers under figures refer to time step.
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Figure 5.34d: Evolution of density contours for Case 2 parameter study:

0.40, Smoothness = 0.60. Numbers under figures refer to time step.
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Figure 5.34e: Evolution of density contours for Case 2 parameter study:

0.d0, Smoothness = 0.60. Numbers under figures refer to time step.
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6 SUMMARY AND CONCLUSIONS

Two adaptive methods have been implemented to investigate a pair of complex fluid-

structure interaction problems. The first method, the quasi-steady-state method, appears

to be quite satisfactory for determining steady-state conditions. However, this method at

present requires a great deal of user interaction and is computational inefficient. With this

approach, the updated grid is completely regenerated for steady-state conditions without

regard to any previous solutions. These drawbacks, however, may be partially overcome by

automating the regridding procedure and interpolating nodal point solution values from pre-

vious grids. Even with these enhancements this method appears to be less computationally

efficient than the node relocation method and will also be unable to provide time accurate

transient solutions unless regridd'ing occurs at every step.

The node relocation method at the present time appears to be quite promising. It is fully

automated, requiring no interaction by the user, and is capable of producing transient results

for some very complex configurations. Additional work, however, is needed to implement the

final steps of the algorithm as outlined in Section 4.2. When completed, this method should

provide an extremely versatile approach for solving a large class of transient fluid-structure

interaction problems.

m
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A APPENDIX: LISTING OF THE REMESHING AL-

GORITHM

This appendix contains an alphabetical listing of the major subroutines constructed for the

execution of the remeshing algorithm. The initial call to the remeshing package is the call

to subroutine CALCMESH in the pre-processing area of the code. This routine initializes

the remeshing tolerances. After the implementation of the boundary displacements affected

by the call to the structures package, the remeshing algorithm is accessed with a call to the

driver routine REMESH. Subroutine CHKMESH tests Jacobians, side lengths, and diagonals

against the tolerances generated in CALCMESH. Subroutines LOADCOF1 and LOADCOF2

load up the various coefficients needed for solution of the ¢ equation (see Eqs.4.2 and 4.3)

which is calculated in subroutine REALROOT. When all new node locations have been

generated, the subroutine INTERPOL is called to drive the interpolation process. Routine
ISPTHERE determines the element that contains the new location of the central master

element node. Values from this element are used to interpolate values at the new node

location in subroutine INTHERE and INTQTN.

The following is a table of contents for the remainder of this appendix.

SUBROUTINE PAGE NUMBER

w

CALMESH A2

CHKMESH A3

INTERPOL A6

INTHERE A8

INTQTN A9

ISPTHERE A9

LOADCOF1 All

LOADCOF2 A12

REALROOT A13

REMESH A17

COMMON BLOCKS A22
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m

w
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w

SUBROUTINE CALCMESH
C

C .......... o • . .... • o,,.o,..,.,..,-....,.,,,,,.,,..-.,...,-o,,-,-o,--,,

C

C THIS ROUTINE CALCULATES A TOLERANCE VALUE FOR THE REMESHING

C CRITERION.

C

C.. , ................... • • ..... .,... •., ,,o ,,.,,.,o,,,.,,,.,,,.,,.,.-,.°

C

%INCLUDE 'SYSCOM.BLK"
% INCLUDE 'PARAMS. BLK"

% INCLUDE 'CCON. BLK'

% INCLUDE 'MOVE. BLK'

% _':._CLUDE 'CELEM. BLK'

% INCLUDE ' CNODE. BLK'

%INCLUDE 'INFLUNC.BLK'

%INCLUDE 'MESHCOEF.BLK'

C

DIMENSION XCORD(2,4)
C

C

C SET INITIAL TOLERANCE LEVEL TO A LARGE NUMBER

C
TOLMESH=I000000

TOLMESHI=I000000

C

C SET THE FRACTION

C
FRAC=0.90

C

C LOOP OVER THE ELEMENTS

C

DO i000 IEL=I,NELEM

C
C TEST TO SEE IF THE ELEMENT IS IN THE INFLUENCE REGION

C

IF (IELACT (IEL) .GT. I) THEN
C

C DETERMINE THE COORDINATES OF THE NODES AND THE DIAGONALS OF THE

C ELEMENTS

DO 100 INOD=I,4

NODE=NODES (INOD, IEL)

XCORD (I, INOD) :-X (I, NODE)

XCORD (2, INOD) =X (2, NODE )
CONTINUEi00

C

DIAGI=SQRT ( (XCORD (i, 3) -XCORD (I, i) ) **2

+ (XCORD (2,3) -XCORD (2, i) ) **2 )

DIAG2=SQRT ( (XCORD (I, 4) -XCORD (i, 2) ) **2

+ (XCORD (2, 4) -XCORD (2,2)) **2)

C
C FIND THE RATIO OF THE SHORTER TO LONGER SIDE

C

SHORT=MIN (D IAGI, DIAG2 )

XLONG=MAX (D IAGI, DIAG2 )
TEST=SHORT/XLONG

C

C FIND THE MINIMUM

C

TOLMESH=MIN (TOLMESH, TEST)

C

C CALCULATE THE SIDE LENGTHS

A2
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C

C

SIDEI=SQRT ( (XCORD (I

+ (XCORD (2

SIDE2=SQRT ( (XCORD (I

+ (XCORD (2

SIDE3=SQRT ( (XCORD (I

+ (XCORD (2

SIDE4=SQRT ( (XCORD (1

+ (XCORD (2

,2) -XCORD (I, I) ) **2

,2) -XCORD (2, I) ) **2)

,3) -XCORD (I, 2) ) **2

,3) -XCORD (2,2)) **2)

,4) -XCORD (I, 3) ) **2

, 4) -XCORD (2,3)) **2)

, i) -XCORD (i, 4) ) **2

, i) -XCORD (2, 4) ) **2)

C FIND THE SHORTEST AND LONGEST SIDES

C

SMAX=MAX (SIDE1, SIDE2, SIDE3, SIDE4)

SMIN=MIN (SIDE1, SIDE2, SIDE3, SIDE4)

C
C FIND THE RATIO OF THE SHORTER TO LONGER SIDE

C

TESTSID=SMIN/SMAX

C
C SAVE THE MINIMUM VALU_

C

TESTMINI=MIN(TESTSID,TESTMINI)

C

ENDIF

C

i000 CONTINUE

C

C SET THE TOLERANCE AS A FRACTION OF THE MINIMUM TOLERANCE OF THE
C ORIGINAL MESH

C

TOLMESH=TOLMESH*FRAC

TOLMESHI=TOLMESHI*FRAC

RETURN
END

SUBROUTINE CHKMESH(IFLAG)
C

C ............. ,.....*.,,o..°°.....,,.,o..,....o......-. ..... • ....

C

C THIS ROUTINE DETERMINES IF THE INFLUENCE MESH NEEDS

C REMESHING. REMESHING IS PERFORMED IF THE RATIO OF THE

C DIAGONALS OF AT LEAST ONE ELEMENT IN THE INFLUENCE
C REGION IS LESS THAN A STATED TOLERANCE VALUE.

C

C,,,o.,,......,.,,.o,...,.o..,,,.....,,,...,...-,.-.-.o...,o-.o.o

C

C PARAMETERS:

C IFLAG - FLAG TO DETERMINE IF REMESHING IS TO BE PERFORMED

C 1,2 = YES, 0 = NO
C

%INCLUDE 'SYSCOM.BLK'
%INCLUDE 'PARAMS.BLK'

%INCLUDE 'LUNITS.BLK"

%INCLUDE 'CCON.BLK'

%INCLUDE 'MOVE.BLK'

%INCLUDE 'CELEM.BLK"

%INCLUDE 'CNODE.BLK'

%INCLUDE 'INFLUNC.BLK"
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%
%

%

C

C

C

C
C

C

INCLUDE 'MESHCOEF.BLK'

INCLUDE 'QUADR.BLK'

INCLUDE 'TRANSFO.BLK'

DIMENSION XC(4),YC(4)

DIMENSION NODCON(4),NODSEC(4),XIP(2,4)

DATA XIP/-I.0, -1.0, 1.0,-1.0, 1.0,1.0, -i.0, i.0/

INITIALIZE THE IFLAG TO ZERO

IFLAG=0

TESTMIN=I.0E6

TESTMINI=I.0E6

SMALL =I.0E-5

XJMIN=I.0E6

RETURN IF THERE ARE NO ELEMENTS IN THE INFLUENCE REGION

IF(NNINFR.EQ.0)RETURN

C
C LOOP OVER THE ELEMENTS AND DETERMINE WHICH ARE IN THE

C INFLUENCE REGION

C

DO i000 IEL=I,NELEM

C

• IF (IELACT (IEL) .GT. I) THEN
C

C DETERMINE THE ELEMENT AND THE LENGTHS OF THE DIAGONALS

C

CALL DETCO(IEL,NUMCON,NODCON,NODSEC)

CALL COORDTNI(IEL,NI/MCON,NODCON,NODSEC, XC,YC)

C

DIAGI=SQRT ( (XC (3) -XC (i)) **2+ (YC (3) -YC (I)) **2)
DIAG2=SQRT ( (XC (4) -XC (2)) **2+ (YC (4) -YC (2)) **2)

C

C FIND THE RATIO OF THE SHORTER TO LONGER DIAGONAL

C

SHORT=MIN (D IAGI, DIAG2 )

XLONG=MAX (D IAGI, D IAG2 )
TEST=SHORT/XLONG

C SAVE THE MINIMUM VALUE

C

TESTMIN=MIN(TEST,TESTMIN)

C
C DETERMINE THE LENGTHS OF THE SIDES

C

SIDEI=SQRT ( (XC (2) -XC (i)) **2+ (YC (2)-YC (I)) **2)

SIDE2=SQRT ( (XC (3) -XC (2)) **2+ (YC (3) -YC (2)) **2)

SIDE3_SQRT ( (XC (4) -XC (3)) **2+ (YC (4) -YC (3)) **2)

SIDE4=SQRT ( (XC (I) -XC (4)) **2+ (YC (i) -YC (4)) **2)

C
C FIND THE SHORTEST AND LONGEST SIDES

C
SMAX=MAX(SIDEI,SIDE2,SIDE3,SIDE4)

SMIN=MIN(SIDEI,SIDE2,SIDE3,SIDE4)

C

C FIND THE RATIO OF THE SHORTER TO LONGER SIDE
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C
TESTSID=SMIN/SMAX

C

C SAVE THE MINIMUM VALUE

C
TESTMINI=MIN(TESTSID,TESTMINI)

C

C CHECK THE JACOBIAN AT THE INTEGRATION POINTS

C
CALL TRANSF (XC, YC)

C

C LOOP OVER THE INTEGRATION POINTS

C
DO 100 INT=I,4

C
C CALCULATE THE DERVATIV_S OF X AND Y WRT THE MASTER COORDS

C
DXDSII=CXXO+CXXHO*XIP(2,INT)
DXDSI2=CXHO+CXXHO*XIP(I, INT)

DXDS21=CYXO+CYXHO*XIP(2,INT)

DXDS22=CYHO+CYXHO*XIP(I,INT)

C
C COMPUTE THE JACOBIAN OF THE TRANSFORMATION.

C
XJAC=DXD S 11 *DXD S 22 -DXDS 12 *DXDS 21

C

C WRITE OUT THE BAD VALUES
C

ii00

IF (XJAC. LT. 0.0) THEN

WRITE (LTERM, II00) IEL, INT
FORMAT(/,/,3X,'CHKELM : BAD JACOBIAN ',

'AT ELEMENT, INT ',217)

END IF

C

I000

C

C

C

C SET A FLAG FOR MOVING THE NODES

C

C CHECK THE MINIMUM VALUES FOR A VALUE LESS THAN THE TOLERANCE

C

IF (TESTMIN .LT .TOLMESH) IFLAG=I

IF (TESTMINI .LT .TOLMESHI) IFLAG=I

C
C TEST FOR MINIMUM JACOBIAN

C
XJMIN=MIN (XJAC, XJMIN)

C

I00 CONTINUE

C

ENDIF

CONTINUE

IF (XJMIN. LT. SMALL) IFLAG=2

RETURN

END

C

C

C
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SUBROUTINE INTERPOL

%INCLUDE 'SYSCOM.BLK'

C

C ............ • ...... .--,-.°°" ..... • .... °'''°'°''°'''''°'°''°'" .... °'°°''''''°

C
C THIS ROUTINE INTERPOLATES THE VALUES AT THE NEW LOCATIONS OF THE NODES

C FROM THE VALUES AT THE OLD LOCATIONS OF THE NODES.

C

C ....... ° ........ ,,o° ...... • .... oo°--'''°''''°'°°'°°°''°°°'°'''°°'°°°''°°'''"

C

%INCLUDE 'PARAMS.BLK'

%INCLUDE 'BUFFER.BLK'

%INCLUDE 'CELEM.BLK'

%INCLUDE 'INFLUNC.BLK'

%INCLUDE 'LUNITS.BLK"

C

DIMENSION V(2)

DIMENSION LIST (2, i000)

C
C LOOP THROUGH INTERIOR BOUNDARY NODES

C
DO I000 INODE = i, NNINFR

C
C INITIALIZE FLAGS AND ARRAYS

C
IFLAG = 0

IHERE = 0
ICOUNT = 1

CALL SETZI(2000, LIST)

C
C GET ELEMENT, NODE NUMBERS AND NODAL COORDINATES

C

MNODE = INTNOD (I, INODE)

IEL = INTNOD(2, INODE)

V(1) = XBUF (I, MNODE)

V(2) = XBUF (2, MNODE)

C
C CHECK TO SEE IF THE NEW LOCATION OF THIS NODE FALLS INSIDE IEL

C
CALL ISPTHERE(IEL, V, IHERE)

C
C IF MNODE IS IN THIS ELEMENT, INTERPOLATE THE VALUES AND RESET QTN

C

IF (IHERE .EQ. i) THEN
C

CALL INTHERE(IEL, MNODE, V)

GOTO I000

C
/

ELSE

C
C IF M_NODE IS NOT IN THE ELEMENT, ADD TO LIST AND SET CHECK FLAG

C
LIST (I, ICOUNT) = IEL

LIST (2, ICOUNT) = 1

C
ENDIF

C

C ALLOW SIX LEVELS OF ITERATIONS

C

DO 800 ILEV = i, 6

C
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C SAVE THE CURRENT NUMBER OF ELEMENTS IN THE LIST
C

ICOUNT2 = ICOUNT

C

C LOOP OVER THE ELEMENTS IN THE LIST

C

DO 250 I -- i, ICOUNT2

C

C RETRIEVE THE ELEMENT NUMBER

C

IEL = LIST(!,I)

C

C LOOP OVER THE NELCON SIDES OF THE ELEMENT

C

DO 200 J =_ I, 8

C

C FIND A NEIGHBORING ELEMENT

C

NEIGH = NELCON(J, IEL)
C

IF (NEIGH .GT. 0) THEN
C

C CHECK TO SEE IF THE ELEMENT IS IN THE PREVIOUS LIST

C

CALL SEARCHI(LIST, 2, I, ICOUNT2, NEIGH, INLIST)
C

C IF IT'S NOT IN THE LIST, ADD IT TO THE LIST
C

IF (INLIST .EQ. 0) THEN

C
ICOUNT = ICOUNT + 1

LIST (I, ICOUNT) = NEIGH

LIST (2, ICOUNT) = 0
C

ENDIF

C

ENDIF
C

200 CONTINUE

C

250 CONTINUE

C

C SORT THE LIST AND ELIMINATE DUPLICATES
C

CALL SORTI(LIST, 2, I, ICOUNT)

CALL ELMDUP(LIST, 2, i, ICOUNT)
C

C LOOP OVER THE ELEMENTS IN THE LIST

C

DO 300 i = I, ICOUNT
C

C CHECK TO SEE IF THIS ELEMENT HAS BEEN CHECKED

C

IF (LIST(2,I) .EQ. 0) THEN
C

C RETRIEVE THE ELEMENT NUMBER
C

IEL _ LIST(I,I)

C

C CHECK TO SEE IF THE NEW LOCATION OF THIS NODE FALLS INSIDE IEL"

C

CALL ISPTHERE(IEL, V, IHERE)
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C
C IF MNODE IS IN THIS ELEMENT, INTERPOLATE THE VALUES AND RESET QTN

C
IF (IHERE .EQ. I) THEN

CALL INTHERE(IEL, MNODE, V)
GOTO 1000

ELSE

C

C IF MNODE IS NOT IN THE ELEMENT SET CHECK FLAG

C

LIST(2,I) = 1

C

C

C

3OO
C

8O0

C

ENDIF

ENDIF

CONTINUE

CONTINUE

C IF THE 800 LOOP HAS BEEN COMPLETED WITHOUT JUMPING OUT, THE NODE

C HAS NOT BEEN FOUND IN THE AREA, SO WRITE AN ERROR MESSAGE AND STOP

C

WRITE(LTERM, 900)V(1),V(2),MNODE
900 FORMAT(/,/,3X,' POINT NOT FOUND ',2E15.7, _ MNODE = ',I5)

CALL SSTOP(0,'INTERPOL')

CONTINUE

C

I000

C

C

RETURN

END

SUBROUTINE INTHERE(IEL, MNODE, V)

%INCLUDE 'SYSCOM.BLK'

C

C ........ • ........ ,.o.o..o ..... ooooo°oo-oo°,o .... ,,,'°°°''''°°°" ..... _ .......

C
C THIS ROUTINE INTERPOLATES THE VALUES AT A NODE IN AN ELEMENT AND RESETS

C THE CORRESPONDING QTN RECORD.

C
C ........ • .... ° ........ o,oooooooooooo°ooo°°°°°°'°'°°°'''°°°_"° .... °'''° ..... °°°

C
%INCLUDE 'PARAMS.BLK'

%INCLUDE 'SOLVEC.BLK'

C

DIMENSION QTNVAL(4)

C

C CALL THE INTERPOLATION ROUTINE

C
CALL INTQTN(IEL, V, QTNVAL)

C

C RESET THE QTN VALUES
C

DO I00 NDOF = i, 4

C

QTN(MNODE,NDOF) = QTNVAL(NDOF)
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I00 CONTINUE

C
C

RETURN

END

SUBROUTINE INTQTN(IEL, XY, QTNLOC)

C
C ..... o,oo.°o..oooo,ooo-oo°oo-ooo .... °°o°°°'°°'°°

C
C THIS ROUTINE EXTRACTS THE SOLUTION VALUE

C AT THE POINT XY

C

C ................. ...... o°o-°°°° .... °°°''°¶°°°°°"

C

C PARAMETERS:

C XY - COORDINATES OF THE POINT
C QTNL©C - EXTRACTED SOLUTION VALUE

C

%INCLUDE 'SYSCOM.BLK'

%INCLUDE 'PARAMS.BLK'

%INCLUDE 'LUNITS.BLK'

C
DIMENSION XY(2) ,QTNLOC(4) ,EPS(2)

DIMENSION QNOD(4,4),PSI(4),DPSI(2,4)

C
C LOAD UP THE MASTER ELEMENT COORDINATE POINT

C

CALL GETEN(IEL,XY(1),XY(2),EPS)

C
C LOAD UP THE SOLUTION VALUES

C

CALL GETSOL(IEL,QNOD)

C
C EVALUATE THE PRIMATIVE VARIABLES FROM SUMMING THE

C SHAPE FUNCITONS TIMES THE NODAL VALUES

C

CALL SETZ (4 ,QTNLOC)

CALL SHAPE (EPS, PSI, DPSI)

C

4OO
5OO

C

C

DO 500 IFLOW=I,4
DO 400 ICOMP=I,4

QTNLOC(IFLOW)=QTNLOC(IFLOW)+QNOD(IFLOW, ICOMP)*PSI(ICOMP)

CONTINUE

CONTINUE

RETURN

END

SUBROUTINE ISPTHERE(IEL,V, IFLAG)

C

C° ...... ° .... o°.°°o°.°oo°° ..... °o°°°°'°¶°°°'°°°°°°°°'''°'°°°°°°'°°°

C

C THE ROUTINE DETERMINES IF THE GIVEN LOCATION FALLS WITHIN

C THE SPECIFIED NODE (IS PoinT HERE)

C

C.oo.°o°°o°°°oo°o ..... ooo.°°o° ........ °" .... °°'°°°°''°'°'°°°'°° ....
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C
C PARAMETERS:

C IEL - SPECIFIED ELEMENT

C V - COORDINATES OF POINT FOR SEARCH

C IFLAG - FLAG SET TO 1 IF LOCATION IS IN

C

%INCLUDE 'SYSCOM.BLK"

% INCLUDE 'PARAMS. BLK'

C

C

C

C

C

C
C

DIMENSION XC(4),YC(4),VEC(2,4),V(2)
DIMENSION NUMCON (4), NODSEC (4)

INITIALIZE THE FLAG

IFLAG=0

DETERMINE THE COORDINATES OF THE ELEMENT

CALL DETCO(IEL,NUMCON, NODCON,NODSEC)

CALL COORD(IEL,NI.IMCON, NODCON, NODSEC,XC,YC)
C

C DETERMINE THE COMPONENTS OF THE VECTORS FROM THE

C COORDINATE POINT TO THE NODES

C

DO i00 ICO=I,4

VEC (I, ICO) =XC (ICO) -V(1)

VEC (2, ICO) =YC (ICO) -V(2)

i00 CONTINUE
C

C CHECK AND SEE

C

C

C

C

C

IF THE COORD POINT IS IN THE FIRST

TRIANGULAR SUBELEMENT DEFINED BY POINTS 1,2, AND

CALCULATE THE NECESSARY CROSS PRODUCTS

Vl X V2 V2 X V4 V4 X Vl

CROSS 12=VEC (I, I) *VEC (2,2) -VEC (i, 2) *VEC (2, i)

CROSS24=VEC (I, 2) *VEC (2, 4) -VEC (i, 4) *VEC (2,2)

CROSS4!=VEC (i, 4) *VEC (2, i) -VEC (i, i) *VEC (2,4)

CHECK AND SEE IF ALL THE CROSS PRODUCTS ARE >= 0

ELEMENT

IF(CROSSI2.GE.0.AND.CROSS24.GE.0.AND.CROSS41.GE.0)THEN
IFLAG=I

RETURN

ENDIF

C
C THE POINT IS NOT IN THE FIRST SUBELEMENT CHECK THE SECOND

C TRIANGULAR ELEMENT DEFINED BY POINTS 2,3, AND 4

C

C CALCULATE THE NECESSARY CROSS PRODUCTS

C V2 X V3 V3 X V4 V4 X V2

C

CROSS23=VEC (i, 2) *VEC (2,3) -VEC (I, 3) *VEC (2,2)

CROSS34=VEC (i, 3) *VEC (2, 4) -VEC (I, 4) *VEC (2,3)

CROSS 42=VEC (i, 4) *VEC (2,2) ,VEC (I, 2) *VEC (2, 4)
C

C CHECK AND SEE IF ALL THE CROSS PRODUCTS ARE >= 0

C

IF(CROSS23.GE.0.AND.CROSS34.GE.0.AND.CROSS42.GE.0)THEN
IFLAG=I

RETURN
ENDIF
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C
C

RETURN
END

m

SUBROUTINE LOADCOFI(A)

C

C .... . ......... ..o•..o...o.o.. ......... o.oo ........ . ....... .•.)..oo

C

C THIS ROUTINE LOADS UP THE VARIOUS COEFFICIENTS USED IN THE

C REMESHING EQUATIONS. THE COEFFICIENTS K, L, AND M ARE FROM

C THE SMOOTHNESS EQUATION• THE COEFFICIENTS P AND R ARE FROM

C THE ORTHOGONALITY EQUATION. THE C COEFFICIENTS ARE USED IN

C THE F FUNCTION EQUATION AND ITS GRADIENT.

C

................... .. .... ....oo...o......o.,..o...o.o,..,)o.o..o.•

C
C PARAMETERS:

C A - COORDINATES OF THE NODES NEIGHBORING THE MASTER NODE

C

%INCLUDE 'SYSCOM.BLK'

%INCLUDE 'PARAMS.BLK'

%INCLUDE 'MESHCOEF.BLK'
C

DIMENSION A(2,4)

DIMENSION XK(4,3),XL(12),XM(6)
DIMENSION P(12),R(8)

C

C
C

i00

C

C

C

25O

2OO
t"

LOAD UP THE K COEFFICIENTS

DO i00 I=i,4
J=I+l

IF (J.GT. 4) J=J-4

XK(I,I)=A(I,I)*A(2,J)-A(2,I)*A(I,J)

XK (I, 2) =A(2, I) -A (2, J)

XK(I,3)=A(I,J)-A(I,I)
CONTINUE

LOAD UP THE L COEFFICIENTS

DO 200 IDUM=I,4
IFACTOR=IDUM-I

IDUMI=IDUM+I
IF(IDUMI.GT.4)IDUMI=IDUMI-4

DO 250 I=i,3
ISUB=I+3*IFACTOR

XL(ISUB)=XK(IDUM, I)-XK(IDUMI,I)
CONTINUE

CONTINUE

C LOAD

C
UP THE M COEFFICIENTS

XM (i) =XL (i) *XL (I) +XL (4) *XL (4) +XL (7) *XL (7) +XL (I0) *XL (I0)

XM (2) =2.0* (XL (i) *XL (2) +XL (4) *XL (5) +XL (7) *XL (8) +XL (i0) *XL (II))
XM (3) =2.0* (XL (i) *XL (3) +XL (4) *XL (6) +XL (7) *XL (9) +XL (I0) *XL (12))

XM (4) =XL (2) *XL (2) +XL (5) *XL (5) +XL (8) *XL (8) +XL (ii) *XL (II)

XM (5) =XL (3) *XL (3) +XL (6) *XL (6) +XL (9) *XL (9) +XL (12) *XL (12)

XM(6) =2.0* (XL (2) *XL (3) +XL (5) *XL (6) +XL (8) *XL (9) +XL (I!) *XL (12))

LOAD UP THE P COEFFICIENTS

All
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C

C

C
C

300

C

C

C

P(1)=A(I,I)*A(I,2)+A(2,1)*A(2,2)

P(2)=-A(I,I)-A(I,2)

P (3) =-A (2, i) -A(2,2)

P(4)=A(I,4)*A(I,I)+A(2,4)*A(2,1)

P(5)=-A(I,4)-A(I,I)

P(6)=-A(2,4)-A(2,1)

P(7)=A(I,3)*A(I,4)+A(2,3)*A(2,4)

P (8)=-A (I, 3) -A(I, 4)

P(9)=-A(2,3)-A(2,4)
P (I0) =A(I, 2) *A(I, 3) +A(2,2) *A(2,3)

P (Ii) =-A (i, 2) -A(I, 3)

P (12) =-A (2,2) -A(2,3)

LOAD UP THE R COEFFICIENTS

R(1)
R(2)
R(3)
R(4)

a(5)

R(6)

R(7)

R(8)

=P (1) *P (1) +P (4) *P (4) +P (7) *P (7) +P (10) *P (10)

=2.0* (P (I) *P (2) +P (4) *P (5) +P (7) *P (8) +P (I0) *P (ii))

=2.0* (P (i) *P (3) +P (4) *P (6) +P (7) *P (9) +P (I0) *P (12))
=2 .0* (P (1) +P (4) +P (7) +P (IO) )+P (2) *P (2) +P (5) *P (5)

+P (8) *P (8) +P (II) *P (II)

=2.0" (P (I) +P (4) +P (7) +P (i0)) +P (3) *P (3) +P (6)*P (6)

+p (9) *p (9) +P (12) *p (12)

=2.0*(P(2)*P(3)+P(5)*P(6)+P(8)*P(9)+P(ll)*p(12))
=2.0" (P (2) +p (5) +p (8) +P (Ii))

=2 .o* (P (3) +p (6) +P (9) +p (12))

LOAD THE C COEFFICIENTS INTO MESHCOEF.BLK

DO 300 I=1,6

C(I)=XM(I)+ALPHA*(R(I)-XM(I))
CONTINUE

C (7) =ALPHA*R (7)

C (8) =ALPHA*R (8)
C (9) --4.0*ALPHA

C(I0)=2"C (9)

RETURN

END

SUBROUTINE LOADCOF2 (V, DV)

C
C .......... ........ , ........ ,o,oo,o,,,,oo°.,,.,,,,,,.,..,,,,,.,,,,..

C
C THIS ROUTINE CALCULATES THE COEFFICIENTS FOR THE PSI

C EQUATION AND ITS DERIVATIVE USED IN THE REMESHING ROUTINES

C . .

C.

C

C PARAMETERS:

C V
C DV

C

%INCLUDE

%INCLUDE

%INCLUDE

C

DIMENSION

- COORDINATES OF THE MASTER NODE
- CHANGE IN COORDINATES OF THE MASTER NODE

'SYSCOM.BLK'

'PARAMS.BLK'

'MESHCOEF.BLK'

V(2) ,DV(2)

A12



C

C

G(1)

G(2)

G(3)

G(4)

=C (I) +C (2) *V(1) +C (3) *V (2) +C (4) *V (i) *V(1) +C (5) *V(2) *V(2)

+C(6) *V(1) *V(2)+C(7)*V(1) *V(1) *V(1)+C(8) *V(1) *V(1) *V(2)

+C(7) *V(1) *V(2) *V(2)+C(8) *V(2) *V(2) *V(2)

+C(9) * (V(1) *V(1) *V(1) *V(1) +V(2) *V(2) *V(2) *V(2) )

+C (I) *V(1) *V(1) *V(2) *V(2)

=C (2) *DV (I) +C (3) *DV (2) +2.0*C (4) *V (i) *DV (i)

+2.0*C(5)*V(2)*DV(2)+C(6)*(V(2)*DV(1)+V(1)*DV(2))

+3.0*C (7) *V (i) *V(1) *DV (I) +C (8) * (2.0*V (i) *V(2) *DV (i)
+V(1) *V(1) *DV (2))+C (7) * (2.0*V (I) *V(2) *DV (2)

+V(2) *V(2) *DV (I)) +3.0*C (8) *V(2) *V(2) *DV (2)

+C(9) *4.0" (V(1) *V(1) *V(1) *DV (i) +V (2) *V(2) *V(2) *DV (2))

+C (I0) *2.0* (V(1) *V(1) *V(2) *DV (2) +V(1) *V(2) *V(2) *DV (I))

=C (4) *DV (i) *DV (I)+C (5) *DV (2) *DV(2) +C (6) *DV (i) *DV (2)

+3.0*C (7) *V(1) *DV (i) *DV (I) +C (8) * (V(2) *DV (I) *DV (i)

+2.0*V(1)*DV(1)*DV(2))+C(7)*(V(1)*DV(2)*DV(2)

+2.0*V (2) *DV (i) *DV(2) )+3.0*C (8) *V(2) *DV (2) *DV (2)
+C (9) *6.0* (V(1) *V(1) *DV (i) *DV (I) +V(2) *V(2) *DV (2) *DV (2))

+C(10)*(V(1)*V(1)*DV(2)*DV(2)+V(2)*V(2)*DV(1)*DV(1)

+4.0*V(1) *V(2) *DV (I) *DV (2))

=C

+C
+C

+C

(7)*DV(1)*DV(1)*DV(1)+C(8)*DV(1)*DV(1)*DV(2)
(7) *DV (I) *DV (2) *DV (2) +C (8) *DV(2) *DV (2) *DV (2)

(9) *4.0*(V(1)*DV(1)*DV(1)*DV(1)+V(2)*DV(2)*DV(2)*DV(2))

(i0) "2.0* (V(1) *DV (I) *DV (2) *DV(2) +V(2) *DV(1) *Dr (I) *Dr(2

=C(9)*(DV(1)*DV(1)*DV(1)*DV(1)+DV(2)*DV(2)*DV(2)*DV(2))

+C(10)*DV(1)*DV(1)*DV(2)*DV(2)

RETURN

END

:-=

C
C

C

C

C

C

SUBROUTINE REALROOT(COEF,ROOTS,ISAME,ROOT)
C

C ..... o,o,.ooo,o..o.oo,o,...,,o,o,,o,.,,,,,.,,,,i,oo

C

C THIS ROUTINE SORTS THROUGH THE ARRAY ROOTS

C AND DETERMINES THE NUMBER OF REAL ROOTS AND

C PLACES THE RESULTS INTO R/IOOTS

C

C ..... ooo,oo.°loooo°o,,,oooo°°ooo°o°°°,,°°oo,o,_oooo

C

PARAMETERS:

COEF - COEFFICIENTS FOR THE FOURTH ORDER POLYNOMIAL

ROOTS - ROOTS FROM ZCUBIC REAL AND IMAGINARY PARTS
ISAME - FLAG INDICATING THE NUMBER OF IDENTICAL ROOTS

ROOT - REAL ROOTS

%INCLUDE 'SYSCOM.BLK'

%INCLUDE 'PARAMS.BLK'

%INCLUDE 'LUNITS.BLK'

C

DIMENSION COEF(5) ,ROOTS (2,3),RROOTS(3)
C

C

C DEFINE A SMALL VALUE

C

AI3
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SMALL=I. 0E-7
BIG =i. 0E6

OTEN =0.1

ONE s i. 0

C

C CHECK AND SEE IF ISAME IS GREATER THAN 1

C IF SO THEN ALL THE ROOTS MUST BE REAL

C

IF (ISAME.GE.2) THEN

C
C SET THE NUMBER OF REAL ROOTS AND THE VALUES

C

NREAL=3

RROOTS (I) =ROOTS (I, i)

RROOTS (2)==ROOTS (i, 2)

RROOTS (3)=ROOTS (I, 3)
GOTOI 0 0

C

C

C

C

C

C

C

C
C

C

C

ELSE

THERE ARE NO EQUAL ROOTS LOOK AN IMAGINARY ROOT

RMAX=MAX(ROOTS(2,1),ROOTS(2,2),ROOTS(2,3))

CHECK AND SEE IF THE MAX ROOT IS LESS THAN SMALL

IF (RMAX .LT. SMALL) THEN

ASSUME ALL THREE ROOTS ARE REAL

NREAL= 3

RROOTS (i) =ROOTS (I, I)

RROOTS (2)=ROOTS (I, 2)

RROOTS (3) =ROOTS (I, 3)
GOTO 10 0

ELSE
C

C CALCULATE

C

THE RELATIVE NORMS OF THE IMAGINARY PARTS

C
C CHECK FOR

C

C

C CHECK FOR

C

C

C

C

C

C

C

C

XNORMI=ROOTS (2, I) /RMAX

XNORM2=ROOTS (2,2)/RMAX

XNORM3=ROOTS (2,3) /RMAX

EQUAL VALUES AND OPPOSITE SIGN OF 1 AND 2

IF (ABS (ABS (XNORMI) -ABS (XNORM2)) .LT. OTEN) THEN

OPPOSITE SIGNS

S IGNI=S IGN (ONE, XNORMI )

SIGN2=SIGN (ONE, XNORM2 )

IF (SIGN1 .NE. S IGN2) THEN

THEN OPPOSITE SIGNS FOUND CHECK THE REAL PARTS

RMAXI=MAX (ROOTS (I, i) ,ROOTS (1,2))

CHECK FOR A NONZERO VALUE

IF (RMAXl. LT. SMALL) THEN
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C
C THE COMPONENTS ARE EQUAL

C

C SET THE ONE REAL ROOT AS THE THIRD VALUE

C
NRE AL = 1

RROOTS (1 ) =ROOTS (1, 3 )

GOTOI00

C

C

C SET THE NORMS

C

C

ELSE

XNORMI=ROOTS (I, i) /RMAXl

XNORM2=ROOTS (i, 2) /RMAXI

IF(ABS(XNORMI-XNORM2).LT.OTEN)THEN

C

C SET THE ONE REAL ROOT TO THE THIRD VALUE
C

C
C

C
C

C

C

C

C

C

NREAL= 1

RROOTS (I) =ROOTS (i, 3)
GOTOI 00

END IF

END IF

ENDIF

ENDIF

CHECK FOR EQUAL VALUES AND OPPOSITE SIGN OF 1 AND 3

IF (ABS (ABS (XNORMI) -ABS (XNORM3)) .LT .OTEN)THEN

CHECK FOR OPPOSITE SIGNS

S IGNI=S IGN (ONE, XNORMI )
S IGN2=S IGN (ONE, XNORM3 )

IF (S IGNI. NE. S IGN2 )THEN

THEN OPPOSITE SIGNS FOUND CHECK THE REAL PARTS

RMAXI=MAX (ROOTS (I, I) ,ROOTS (i, 3) )

CHECK FOR A NONZERO VALUE

IF (RMAXl .LT .SMALL) THEN

THE COMPONENTS ARE EQUAL

SET THE ONE REAL ROOT AS THE THIRD VALUE

NREAL= 1

RROOTS (I) =ROOTS (I, 2)
GOTOI00

C

C

C SET THE NORMS

C

ELSE

XNORMI=ROOTS (i, i)/RMAXl
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XNORM2=ROOTS (1,3 ) /RMAXI
C

IF (ABS (XNORMI-XNORM2). LT. OTEN) THEN
C

C SET THE ONE REAL ROOT TO THE THIRD VALUE

C

NREAL-I

RROOTS (i)=ROOTS (i, 2)

GOTO 100

C

ENDIF

END IF

ENDIF

ENDIF

C

C CHECK FOR EQUAL VALUES AND OPPOSITE SIGN OF 2 AND 3

C

IF (ABS (ABS (XNORM2) -ABS (XNORM3) ) .LT. OTEN) THEN

C
C CHECK FOR OPPOSITE SIGNS

C

SIGNI=SIGN (ONE, XNORM2 )

S IGN2=S IGN (ONE, XNORM3 )
C

IF (SIGN1 .NE. SIGN2) THEN
C

C THEN OPPOSITE SIGNS FOUND CHECK THE REAL PARTS

C

RMAXI=MAX (ROOTS (i, 2), ROOTS (I, 3) )
C

C CHECK FOR A NONZERO VALUE

C

IF (RMAXI .LT. SMALL) THEN
C

C THE COMPONENTS ARE EQUAL

C

C SET THE ONE REAL ROOT AS THE THIRD VALUE
C

NREAL=I

RROOTS (1 )=ROOTS (1 , 1 )
GOTOI00

C

ELSE
C

C

C

C

C

C

C

C

C

SET THE NORMS

XNORMI=ROOTS (1,2 ) /RMAXl

XNORM2=ROOTS (I, 3) /RMAXl

IF (ABS (XNORMI-XNORM2) .LT. OTEN) THEN

SET THE ONE REAL ROOT TO THE THIRD VALUE

NREAL=I

RROOTS(1)=ROOTS(I,I)
GOTOI00

ENDIF

ENDIF

END IF

ENDIF
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C THERE WAS SOME NON-SMALL IMAGINARY PART BUT
C THERE WERE NO CONJUGATE ROOTS: THUS 3 REAL ROOTS

C
NREAL=3

RROOTS (I) =ROOTS (I, i)

RROOTS (2)=ROOTS (I, 2)

RROOTS (3)=ROOTS (i, 3)
GOTO 100

C

C

C

i00

C

ENDIF

ENDIF

CONTINUE

C NREAL ROOTS HAVE BEEN FOUND

C

C DETERMINE WHICH ONE MINIMIZES THE FUNCITON
C

C

C CHECK THE THREE ROOTS AND DETERMINE THEIR FUNCITON VALUE

C

C

ROOT=I.10EI0

CMIN =1.10El0

C

DO 200 IROOT=I,NREAL
C

C CALCULATE THE VALUE OF THE FOURTH ORDER EQN

C USING ONLY THE REAL PART

C

X=RROOTS (IROOT)

C

CVAL=COEF (i) +COEF (2) *X+COEF (3) *X'X+

COEF (4) *X*X*X+COEF (5) *X*X*X*X

C
C SAVE OFF THE MINIMUM VALUE

C

IF(CVAL.LT.CMIN)THEN
ROOT=X

CMIN=CVAL

ENDIF

C

200

C

CONTINUE

C CHECK AND SEE OF A ROOT WAS SELECTED

C

IF (ROOT.GT.BIG) THEN

WRITE (LTERM, 1100)

FORMAT (/,/, 3X, 'REALROOT : REAL ROOT NOT FOUND' )
ENDIF

1130

C

C

RETURN
END

SUBROUTINE REMESH

C

C °°" .... °'°°'°'°°
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C THIS ROUTINE IS THE DRIVER FOR THE REMESHING ALGORITHM.

C

Co . , .... o , ...... • • o • • • ..... • • • • • • • - • ° ° • o ° • • • o ° • ° • ° ° ° ° • " ° ° " ° ° " " ° ° ' ° ° ° ° ° •

C

C

%INCLUDE 'SYSCOM.BLK'

%INCLUDE 'PARAMS .BLK'

%INCLUDE 'LUNITS .BLK'

%INCLUDE 'BUFFER.BLK'
_.__NCLUDE 'CELEM. BLK'

% L';CLL'DE 'CNODE. BLK'

%INCLUDE 'INFLUNC.BLK'

%INCLUDE 'MESHCOEF.BLK'

C

DIMENSION A(2,4),V(2),DV(2)

D IMENS ION OMEGA (2,3 ), RROOTS (3 )

C

DATA SMALL/I.0E-9/

C
C CHECK TO SEE IF THERE ARE ANY ELEMENTS THAT CAN BE REMESHED

C

IF (NNINFR. EQ. 0) RETURN

C

C CHECK TO SEE IF MESH IS TO BE REMESHED

C

CALL CHKMESH (IFLAG)

C
C CONTINUE IF REMESHING IS REQUIRED

C

IF (IFLAG.NE .0) THEN

C

C SET LOOP COUNTER

C

ICOUNT= 1

S

C SET THE X AND XX ARRAYS (IN COMMON BLOCK CNODE) EQUAL TO EACH OTHER

C

CALL SETEQUAL (2 *MAXND, X (1, 1 ), XBUF (1, 1 ) )

C

C JUMP IN POINT FOR ANOTHER REMESH

C

! 00 CONT INUE

C
C INITIALIZE THE TOLERANCE SUM

C
TOLSUM=0.0

C

C LOOP THROUGH INTERIOR BOUNDARY NODES

C

DO 1000 INODE=I,NNINFR

C

MNODE=INTNOD (1, INODE)

V (1 )=XBUF (1, MNODE)

V (2 )=XBUF (2, MNODE )
C
C FIND NEIGHBORING NODES AND LOAD THEIR COORDINATES INTO ARRAY A

C
IBLOCK=0

IEL=INTNOD (2, INODE)

200 IBLOCK=IBLOCK+ 1

C
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300

C

C

C

C LOAD UP

C

C

C CALCULATE

C

DO 300 N=I,4
NTEST=NODES (N, IEL)

IF (NTEST. EQ .MNODE) THEN
NNODE=N+ 1

NI=N
END IF

CONTINUE

IF(NNODE.GT.4)NNODE=NNODE-4

A(I, NI) =XBUF (I, NODES (N-NODE, IEL) )

A (2, NI) =XBUF (2, NODES (NNODE, IEL) )

NSIDE=NI-I

IF(NSIDE.LT.I)NSIDE=NSIDE+4

IELNEW=NELCON(NSIDE, IEL)

IF(IBLOCK.LT.4)THEN
IEL=IELNEW

GOTO200

ENDIF

COEFFICIENTS FOR THE REMESHING EQUATIONS

CALL LOADCOFI (A (i, I) )

THE DENOMINATOR OF BETA TO DETERMINE

DENOM=APN (INODE, I) *APN (INODE, I)

+APN (INODE, 2) *APN (INODE, 2)

IF IT IS

C CALCULATE

C

C

C LOAD

C

DELTA V

IF (ICOUNT .EQ. 1 .OR.DENOM.EQ. 0 .0) THEN

DUMMY ARRAY APN WITH DELTA V(0)

APN (INODE, i) =- (C (2) +2.0*C (4) *V(1) +C (6) *V (2)

+3.0*C (7) *V(1) *V(1) +2.0*C (8) *V(1) *V(2)

+C (7) *V(2)*V(2)+4.0"C(9) *V(1) *V(1) *V(1)

+2.0"C (i0) *V(1) *V(2)*V(2) )

APN (INODE, 2) =- (C (3) +2.0*C (5) *V (2) +C (6) *V (I)

+3.0*C (8) *V(2) *V (2)+2.0*C (7) *V(1) *V(2)
+C C8) *V(1) *V(1) +4.0"C (9) *V(2) *V(2)*V(2)

+2.0"C(I0) *V(1) *V(1) *V(2) )

PN (INODE, I) =APN (INODE, 1 )

PN (INODE, 2) =APN (INODE, 2)
C

ELSE

C

C CALCULATE BETA

C

C LOAD DUMMY

C
ARRAY PN WiTH GRAD F(V(N))

PN (INODE, i) =- (C (2) +2.0*C (4) *V (1)+C (6) *V (2)

+3.0*C (7) *V(1) *V(1) +2.0*C (8) *V(1) *V(2)

+C(7) *V(2) *V(2) +4 °0*C (9) *V(!) *V(1) *V(1)

+2.0"C(I0) *V(1) *V(2) *V(2) )

PN (INODE, 2) =- (C (3) +2.0*C (5) *V (2) +C (6) *V (i)

+3.0*C (8) *V (2) *V (2) +2.0*C (7) *V (I) *V (2)

+C(8)*V(1)*V(1)+4o0*C(9)*V(2)*V(2)*V(2)

ZERO
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C

C

C

C

C

C

C
C

+2.0*C (i0) *V(1) *V(1) *V(2) )

BETA = (PN (INODE, I) *PN (INODE, I)

+PN (INODE, 2 ) *PN (INODE, 2 ) )/DENOM

LOAD DUMMY ARRAY APN WITH DELTA V(N)

APN (INODE, i)=PN (INODE, i) +BETA*APN (INODE, i)
APN (INODE, 2) =PN (INODE, 2) +BETA*APN (INODE, 2)

ENDIF

LOAD THE G COEFFICIENTS

DV (1 )=APN (INODE, 1 )

DV (2 ) =APN (INODE, 2 )

CALL LOADCOF2(V(1),DV(1))

DETERMINE IF THE COEFFICIENT ON THE OMEGA-CUBED TERM IS ZERO

IF(G(5) .EQ.0.0)THEN

DETERMINE IF THE COEFFICIENT ON

IF SO, DETERMINE IF THE EQUATION IS LINEAR AND

IF IT IS NOT LINEAR, SET WN EQUAL TO ZERO

THE OMEGA-SQUARED TERM IS ZERO

SOLVE FOR WN

IF (G (4) .EQ. 0.0) THEN

IF (G (3) .NE. 0.0) THEN
WN=-G (2) / (2.0_G (3))

ELSE

WN=0.0

ENDIF

GOT0700

C

C
C

C

C

C

C

.: l-= -HE

C

ENDIF

IF ONLY THE OMEGA-CUBED COEFFICIENT IS ZERO SOLVE USING

THE QUADRATIC EQUATION

GI=3.0*G (4)

G2=2.0*G (3)

G3=G (2)

DETERMINE IF THE RADICAL IS POSITIVE OR NEGATIVE

RAD=G2 *G2-4.0*GI*G3

IF (RAD. LT. 0.0) THEN
WN=0.0

ELSE

ROOT=SQRT (RAD)

WI= (-G2+ROOT)/GI

W2= (-G2-ROOT) /GI

RADICAL IS POSITIVE, TEST THE ROOTS FOR MINIMIZATION OF PSI

PTESTI=G(1)+G(2)*WI+G(3)*WI*WI+G(4)*WI*WI*WI
PTEST2=G (!) +G (2) *W2+G (3) *W2*W2+G (4) *W2*W2*W2

IF(PTESTI.LE.PTEST2)THEN
WN=WI

ELSE

WN=W2

ENDIF
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C

C

C

C

C

C

ENDIF

ELSE

MINIMIZE THE PSI EQUATION WITH RESPECT TO OMEGA

PSI=F(V(N)+OMEGA*DELTA V(N))

GI=3.0*G(4)/(4.0*G(5))

G2=2.0*G(3)/(4.0*G(5))
G3=G(2) /(4.0"G(5))

C

C

C

C LOAD
C

7O0

C

C ADD

C

C
i000

C

C UPDATE

C

CALL ZCUBIC (GI, G2, G3, OMEGA, IDUMMY)

CALL REALROOT (G, OMEGA, IDUMMY, WN)

ENDIF

OMEGA(N) *DELTA V(N) INTO DUMMY ARRAY DN

GRAD

DN (INODE, i) =WN*APN (INODE, I)
DN (INODE, 2) =WN*APN (INODE, 2)

F TO THE TOLERANCE SUM

TOLSUM=TOLSUM+PN (INODE, 1 ) *PN (INODE, 1 )

+PN (INODE, 2 )*PN (INODE, 2 )

CONTINUE

THE COORDINATES

DO 1200 INODE=I,NNINER

MNODE=INTNOD (1, INODE)

XBUF (1, MNODE )=XBUF (1, MNODE )+DN (INODE, 1 )

XBUF (2, MNODE )=XBUF (2, MNODE) +DN (INODE, 2 )

CONTINUE

C

1200

C

C DETERMINE IF ANOTHER ITERATION IS NECESSARY

C

TOLSUM=SQRT (TOLSUM)
IF (TOLSUM.GT. 1.0E-7*NNINFR) THEN

IF (ICOUNT. LT. 25) THEN

ICOUNT=ICOUNT+I
IF (ICOUNT .EQ. 25) THEN

WRITE(LTERM,*) 'TOLSUM = ',TOLSUM

END IF

GOTO i00

ENDIF

ENDIF

ITERATION INTERPOLATE THE VALUES AT THE NEW

CALL INTERPOL

C

C AFTER

C

PUT THE

C

C AFTER THE NEW VALUES HAVE BEEN EVALUATED,

C COORDINATES INTO THE X COORDINATE ARRAY

C

DO 1500 INODE=I,NNINFR

MNODE=INTNOD(I,INODE)

LOCATIONS

NEW NODAL
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C

X (I, MNODE) =-XBUF (1, MNODE)
X (2, MNODE) =XBUF (2, MNODE)

CONTINUE

ENDIF

RE TURN

END

THE FOLLOWING COMMON BLOCKS ARE USED IN THE REMESHING ROUTINES

COMMON /BUFFER/ APN (MAXND, 4), PN (MAXND, 4) ,DN (MAXND, 4),

XBUF (2, MAXND), INTBUF (2, MAXND), INTV (MAXND)
C

C PARAMETERS :

C APN - DUMMY ARRAY USED IN THE SOLVER AND ELSEWHERE
C PN - DUMMY ARRAY

C DN - DUMMY ARRAY
C XBUF - DUMMY ARRAY USED IN REMESHING

C INTBUF - DUMMY ARRAY

C INTV - DUMMY ARRAY

COMMON /CCON/ NNODE,NELEM, NUMGRP
C

C PARAMETERS:

C NNODE - _ER OF NODES
C NELEM - NUMBER OF ELEMENTS

C

COMMON /CELEM/ NODES(4,MAXEL),NELCON(8,MAXEL),NELGRP(4,MAXEL)
C

C PARAMETERS:

C NODES - ELEMENT NODE NUMBERS
C NELCON - ELEMENT CONNECTIVITY ARRAY
C

w

COMMON /CNODE/ X(2,MAXND)
C

C PARAMETERS:

C X - COORDINATES ARRAY
C

COMMON /INFLUNC/ RADINF,VELN(2,MAXND),

NNINFB,NNINFR, INFBND, INFNOD(MAXBC),
INTNOD(2,MAXND)

C

C PARAMETERS:

RADINF - RADIUS OF INFLUENCE FOR TIME DEPENDENT GRIDS
VELN - NODAL VELOCITIES

NNINFB - NUMBER OF NODES ON THE INFLUENCE BOUNDARY

NNINFR - NUMBER OF NODES IN THE INFLUENCE REGION

INFBND - INFLUENCE BOUNDARY NUMBER OF THE MOVING BOUNDARY

INFNOD - LIST OF NODES ON THE INFLUENCE BOUNDARY

INTNOD - (I) LIST OF NODES IN THE INFLUENCE REGION
(2) ELEMENT ASSOCIATED WITH NODE
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COMMON /LUNITS/ LTERM

C

C

C PARAMETERS :

C

C LTERM - TERMINAL SCREEN UNIT NUMBER
C

•- 7

w

COMMON /MESHCOEF/C (I0) ,G (5) ,ALPHA, TOLMESH, TOLMESHI

C PARAMETERS :

C C

C G

C ALPHA

C

C

C
C

- COEFFICIENTS FOR THE F FUNCTION AND ITS GRADIENT

- COEFFICIENTS FOR THE PSI FUNCTION AND ITS DERIVATIVE

- WEIGHT PARAMETER TO TRADE OFF SMOOTHNESS VS.

ORTHOGONALITY (F=ALPHA*ORT+(I-ALPHA)*SM)

TOLMESH - TOLERANCE VALUE FOR REMESHING

TOLMESHI - TOLERANCE VALUE FOR REMESHING

C THESE COEFFICIENTS ARE USED IN THE REMESHING ROUTINES
C

C

C

C
C

C

C

C

C

C

J.

C

COMMON/MOVE/ IELACT(MAXEL),NODACT(MAXND)

NOD AC T

IELACT(I)- FLAG INDICATING THE LOCATION OF AN ELEMENT I
= 0 INACTIVE

= 1 ACTIVE

= 2 ACTIVE AND IN THE INFLUENCE REGION

= 3 ACTIVE AND BOUNDING THE MOVING PORTION OF THE
INFLUENCE REGION

- FLAG INDICATING WHETHER A NODE IS ACTIVE OR NOT
= 0 INACTIVE

= 1 ACTIVE

PARAMETER (IELMAX=250)

PARAMETER (MAXEL=I0000)

PARAMETER (MAXND=I0000)

PARAMETER (MXNBC=I0)

PARAMETER (MAXBC=800)

PARAMETER (MXNDF=4)

PARAMETER (MAXSTI=I500)

PARAMETER (MAXST2=3000)
C

C PARAMETERS:

IELMAX - MAXIMUM NUMBER OF ELEMENTS TO BE 'RECOMPUTED'

MAXEL - MAXIMUM NUMBER OF ELEMENTS

MAXND - MAXIMUM NUMBER OF NODES

MXNBC - MAXIMUM NUMBER OF BOUNDARY CONDITIONS

MAXBC - MAXIMUM NUMBER OF BCS

MAXSTI - MAXIMUM NUMBER OF NODES/ELEMENTS FOR SOLID REGION
MAXST2 - TWO TIMES MAXSTI

COMMON /QUADR/ XQI(2,4),XBNDRY(2,8)
C

C PARAMETERS:

C XQI - GAUSS INTEGRATION POINT COORDS IN THE MASTER ELEMENT
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C XBNDRY - BOUNDARY GAUSS INTEGRATION POINTS
C

COMMON /SOLVEC/ QTN (MAXND, 4) ,QTNI (MAXND, 4)
C

C PARAMETERS:

C QTN - SOLUTION VECTOR

C QTNI - SOLUTION VECTOR AT THE PREVIOUS STEP
C

COMMON /TRANSFO/ XMO,YMO,CXXO,CXHO,CXXHO, CYMO, CYHO, CYXHO,
XCO(4),YCO(4),IEL, LINT

C

C PARAMETERS :

C XMO -

C YMO -

C CXXO -
C CYXO -

CXHO -

C CYHO -

C CXXHO -

C CYXHO -

C XCO -

C YCO -

C IEL -

C LINT -
C

C

C

C

AVERAGE

AVERAGE

(X (2) -X (I) +X (3) -X (4)
{Y(2)-Y(1)+Y(3)-Y(4)

(x(3) -x(2) +x(4)-x(1)
(Y (3) -Y (2) +Y (4) -Y (I)

(x(1)-x(2) +x(3)-x(4)
(X (I) -Y(2) +Y(3) -Y(4)
NODAL X COORDINATES

NODAL Y COORDINATES
ELEMENT NUMBER

INTEGRATION

ELEMENT X COORDS

ELEMENT Y COORDS

/4
/4
/4
/4
/4
/4

FOR ELEMENT IEL

FOR ELEMENT IEL

POINT NUMBER

NOTE: THESE PARAMETERS ARE USED TO DETERMINE THE JACOBIANS

r
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